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1 Introduction
This section is non-normative.

It is widely agreed upon that the publication of likelihood models from high
energy physics experiments is imperative for the preservation and public ac-
cess to these results. Detailed arguments have been made elsewhere already
[2]. This document sets out to provide a standardized format to publish and
archive statistical models of any size and across a wide range of mathematical
formalisms in a way that is readable by both humans and machines. With the
introduction of pyhf [3, 4], a JSON format for likelihood serialization has been
put forward. However, an interoperable format that encompasses likelihoods
with a scope beyond stacks of binned histograms was lacking. With the release
of ROOT 6.26/00 [5] and the experimental RooJSONFactoryWSTool therein, this gap
has now been filled. This document sets out to document the syntax and fea-
tures of the Statistics Serialization Standard (HS3) for likelihoods and statistical
models in general, as to be adopted by any HS3-compatible statistics framework.
The examples in this document employ the JSON notation, but are intended to
encompass also representations as YAML or TOML.
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1.1 How to use this document
Developers of statistical toolkits are invited to specifically refer to versions of
this document relating to the support of this standard in their respective imple-
mentations. Please note that this document as well as the HS3 standard are still
in development and can still undergo minor and major changes in the future.
This document describes the syntax of HS3 v0.2.9.

1.2 Statistical semantics of HS3

1.2.1 Statistical models, probability distributions and parameters

HS3 takes a “forward-modelling” approach throughout: a statistical model 𝑚
maps a space Θ of free parameters 𝜃 to a space of probability distributions that
describe the possible outcomes of a specific experiment. For any given param-
eters 𝜃, the model returns a concrete probability distribution 𝑚(𝜃). Observed
data 𝑥 is then treated as random variate, presumed to be drawn from the model:
𝑥 ∼ 𝑚(𝜃). Parameters in HS3 are always named, so semantically the elements
of a parameter space Θ are named tuples 𝜃 (meaning tuples in which every entry
has a name). Even if there is only a single free parameter, 𝜃 should be thought of
as a single-entry named tuple. In the current version of this standard, parame-
ter tuples must be flat and only consist of real numbers, vector-valued or nested
entries are not supported yet. Future versions of the standard will likely be less
restrictive, especially with respect to discrete or vector-valued parameters. Pa-
rameter domains defined as part of this standard may be of various types, even
though the current version only supports product domains. Future versions are
likely to be less restrictive in this regard. Mathematically and computation-
ally, it is often convenient to treat parameters as flat real-valued vectors instead
of named tuples, it is the responsibility of the implementation to map between
these different views of parameters when and where necessary. Probability distri-
butions in HS3 (see Distributions) are typically parameterized. Any instance of a
distribution that has some of its parameters bound to names instead of concrete
values, e.g. 𝑚 = 𝑑𝜇=𝑎,𝜎=0.7,𝜆=𝑏,..., constitutes a valid statistical model 𝑚(𝜃) with
model parameters 𝜃 = (𝑎, 𝑏). When probability distributions are combined via
a Cartesian product (see Product distribution), then the named tuples that con-
tain their free parameter values are concatenated. So 𝑚 = 𝑑𝜇=𝑎,𝜎=𝑏 × 𝑑𝜇=𝑐,𝜎=0.7
constitutes a model 𝑚(𝜃) with model parameters 𝜃 = (𝑎, 𝑏, 𝑐). Distribution pa-
rameters may also be bound to the output of functions, and if those functions
have inputs that are bound to names instead of values (or again bound to such
functions, recursively), then those names become part of the model parameters.
A configuration 𝑚 = 𝑑𝜇=𝑎,𝜎=0.7,𝜆=𝑓 , 𝑓 = sum(4.2, 𝑔), 𝑔 = sum(1.3, 𝑏), for exam-
ple, also constitutes a (different) model 𝑚(𝜃) with parameters 𝜃 = (𝑎, 𝑏, 𝑐). If
all parameter values of a probability distribution are set to concrete values, so
if there are not directly (or indirectly via functions) bound to names, we call
this probability distribution a concrete distribution here. Such distributions can
be used as Bayesian priors (see Bayesian inference). The variates of all distri-
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butions (so the possible results of random draws from them) are also named
tuples in all cases. So even instances of univariate distributions, like the normal
distributions, have variates like (𝑥 = …). The names in the variate tuples can
be configured for each instance of a distribution, and must be unique across all
distributions that are used together in a model. In Cartesian products of distri-
butions, their variate tuples are concatenated. As with parameter tuples, nested
tuples are not supported. The tuple entries, however, may be vector-valued, in
contrast to parameter tuples.

1.2.2 Probability density functions (PDFs)

Statistics literature often discriminates between probability density functions
(PDF) for continuous probability distributions and probability mass functions
(PMF) for discrete probability distributions. This standard use the term PDF
for both continuous and discrete distributions. The concept of density is to
be understood in terms of densities in the realm of measure theory here, that
is the density of a probability measure (distribution) is its Radon-Nikodym
derivative in respect to an (implied) reference measure. The choice of refer-
ence measure would be arbitrary in principle, which scales likelihood functions
(Sec. Likelihood) by a constant factor that depends on choice of reference. In
this standard, a specific reference measures is implied for each probability dis-
tribution, typically the Lebesgue measure for continuous distributions and the
counting measure for discrete distributions. The standard aims to to match the
PDF (resp. PMF) most commonly used in literature for each specific probabil-
ity distribution and the mathematical form of the PDF is documented explicitly
for each distribution in the standard. So within HS3, probability densities and
likelihood functions are unambiguous. Here we use PDF(𝑚(𝜃), 𝑥) to denote the
density value of the probability distribution/measure 𝑚, parameterized by 𝜃, at
the point/variate 𝑥, in respect to the implied reference for 𝑚.

1.2.3 Observed and simulated data

The term data refers here to any collection of values that represents the outcome
of an experiment. Data takes the same form as variates of distributions (see
Distributions, i. e. named tuple of real values or vectors. To compare given
data with a given model, the names and shapes of the data entries must match
the variates of the probability distributions 𝑚(𝜃) that the model returns for a
specific choice of parameters 𝜃. This means that given a model 𝑚 and concrete
parameter values 𝜃, drawing a set of random values from the probability distri-
bution 𝑚(𝜃) produces a valid set of simulated observations. Implementations
can use this to provide mock-data generation capabilities.

1.2.4 Likelihood functions

The concrete probability distribution 𝑚(𝜃) that a model 𝑚 returns for specific
parameter values 𝜃 can be compared to observed data 𝑥. This gives rise to a
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likelihood ℒ𝑚,𝑥(𝜃) = PDF(𝑚(𝜃), 𝑥) that is a real-valued function on the pa-
rameter space. Multiple distributions/models that describe different modes of
observation can be combined with multiple sets of data that cover those modes
of observation into a single likelihood (Sec. Likelihoods). In addition to using
observed data, implementations may provide the option to use random data
generated from the model (see Data) to check for Monte-Carlo closure.

1.2.5 Frequentist parameter inference

The standard method of frequentist inference is the maximum (or, respectively,
profile) likelihood method. In the vast majority of cases, the test statistic used
here is the likelihood ratio, that is, the ratio of two values of the likelihood
corresponding to two different points in parameter space: one that maximizes
the likelihood unconditionally, one one that maximizes the likelihood under
some condition such as the values of the parameters of interest expected in the
absence of a deviation from the null hypothesis. The corresponding building
blocks for such an analysis, such as the list of parameters of interest and the
likelihood function to be used, are specified in the analysis section of an HS3

configuration (Sec. Analyses).

1.2.6 Bayesian parameter inference

The standard also encompasses the specification of Baysian posterior distribu-
tions over parameters by combining (Sec. Analyses) likelihoods with probabilty
distributions that acts the priors. Here concrete distributions are used to de-
scribe the prior probability of parameters in addition to parameterized distribu-
tions that are used to describe of the probability of observing specific data.

1.3 How to read this document
In the context of this document, any JSON object is referred to as a struct. A
key-value-pair inside such a struct is referred to as a component. If not explicitly
stated otherwise, all components mentioned are mandatory. The components
located inside the top-level struct are referred to as top-level components. The
keywords optional and required, as well as should and may are used in
accordance with IETF requirement levels [6].

1.4 Terms and Types
This is a list of used types and terms in this document.

• struct: represented with { }, containing a key:value mapping, keys are of
type string.

• component: key-value pair within a struct
• array array of items (either strings or numbers) without keys. Represented

with [...].
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• string: references to objects, names and arbitrary information. Repre-
sented with

• number: either floating or integer type values
• boolean: boolean values; they can be encoded as true and false

All structs defining functions, distributions, parameters, variables, domains,
likelihoods, data or parameter points will be referred to as objects. All objects
must always have a component name that must be unique among all objects.

Within most top-level components, any one string given as a value to any com-
ponent should refer to the name of another object, unless explicitly stated oth-
erwise. Top-level components in which this is not the case are explicitly marked
as such.

1.5 File format
HS3 documents are encoded in the JSON format as defined in ISO/IEC
21778:2017 [7]. Implementations may support other serialization formats that
support a non-ambiguous mapping to JSON, such as TOML or YAML, in
which case they should use a different file extension.

1.6 Validators
Future versions of this standard will recommend official validator implementa-
tions and schemata. Currently, these have not been finalized.

1.7 How to get in touch
Visit the GitHub page https://github.com/hep-statistics-serialization-standa
rd/hep-statistics-serialization-standard

2 Top-level components
In the following, the top-level components of HS3 and their parameters/argu-
ments are described. Each component is completely optional, but certain
components may depend on other components, which should be provided in
that case. The only exception is the component metadata containing the version
of HS3, which is always required. The supported top-level components are

• distributions: (optional) array of objects defining distributions
• functions: (optional) array of objects defining mathematical functions
• data: (optional) array of objects defining observed or simulated data
• likelihoods: (optional) array of objects defining combinations of distri-

butions and data
• domains: (optional) array of objects defining domains, describing ranges

of parameters
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• parameter_points: (optional) array of objects defining parameter points.
These may be used as starting points for minimizations or to document
best-fit-values or nominal truth values of datasets

• analyses: (optional) array of objects defining suggested analyses to be
run on the models in this file

• metadata: required struct containing meta information; HS3 version
number (required), authors, paper references, package versions, data/-
analysis descriptions (optional)

• misc: (optional) struct containing miscellaneous information, e.g. opti-
mizer settings, plotting colors, etc.

In the following each of these are described in more detail with respect to their
own structure.

2.1 Distributions
The top-level component distributions contains an array of distributions in
struct format. Distributions must be normalized, thus, the letter ℳ in the
following descriptions will always relate to the normalization of the distribution.
The value of ℳ is conditional on the current domain. It must be chosen such
that the integral of the distribution over the current domain equals one. The
implementations might chose to perform this integral using analytical or numer-
ical means. Each distribution must have the components type, denoting the
kind of distribution described, and a component name, which acts as a unique
identifier of this distribution among all other named objects. Distributions in
general have the following keys: - name: custom unique string (required), e.
g. my_distribution_of_x - type: string (required) that determines the kind
of distribution, e. g. gaussian_dist - ...: each distribution may have compo-
nents for the various individual parameters. For example, distributions of type
gaussian_dist have the specific components mean, sigma and x. In general, these
components may be strings as references to other objects, but may also directly
yield numeric or boolean values. Depending on the parameter and the type of
distribution, they appear either in single item or array format.

Example: Distributions
"distributions":[

{
"name":"gauss1",
"type":"gaussian_dist",
"mean":1.0,
"sigma":"param_sigma",
"x":"param_x"

},
{

"name":"exp1",
"type":"exponential_dist",
"c":-2,
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"x":"data_x"
},
...

]

Distributions can be treated either as extended or as non-extended [8]. Some
distributions are always extended, others can never be extended, yet others can
be used in extended and non-extended scenarios and have a switch selecting
between the two. An non-extended distribution is always normalized to the
unity. An extended distribution, on the other hand, can yield values larger than
unity, where the yield is interpreted as the number of predicted events. That
is to say, the distribution is augmented by a factor that is a Poisson constraint
term for the total number of events. In the following, all distributions supported
in HS3 v0.2.9 are listed in detail. Future versions will expand upon this list.

2.1.1 Univariate fundamental distributions

This section contains univariate fundamental distributions in the sense that
they cannot refer to any other distribution – only to functions, parameters and
exactly one variable.

2.1.1.1 Argus distribution

The Argus background distribution is defined as

ArgusPdf(𝑚, 𝑚0, 𝑐, 𝑝) = 1
ℳ ⋅ 𝑚 ⋅ [1 − ( 𝑚

𝑚0
)

2
]

𝑝

⋅ exp [𝑐 ⋅ (1 − ( 𝑚
𝑚0

)
2
)]

and describes the ARGUS background shape.

• name: custom unique string
• type: argus_dist
• mass: name of the variable 𝑚 used as mass
• resonance: value or name of the parameter used as resonance 𝑚0
• slope: value or name of the parameter used as slope 𝑐
• power: value or name of the parameter used as exponent 𝑝.

2.1.1.2 Continued Poisson distribution

The of a continued Poisson distribution of the variable 𝑥 is defined as

ContinuedPoissonPdf(𝑥, 𝜆) = 1
ℳ exp (𝑥 ⋅ ln 𝜆 − 𝜆 − ln Γ(𝑥 + 1)) ,

where Γ denotes the Euler Gamma function.
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This function is similar the the Poisson distribution (see Poisson distribution),
but can accept non-integer values for 𝑥. Notably, the differences between the
two might be significant for small values of 𝑥 (below x). Nevertheless, the
distribution is useful to deal with datasets with non-integer event counts, such
as asimov datasets [9].

• name: custom unique string
• type: poisson_dist
• x: name of the variable 𝑥 (usually referred to as 𝑘 for the standard integer

case)
• mean: value or name of the parameter used as mean 𝜆.

2.1.1.3 Uniform distribution

The of a continuous uniform distribution is defined as:

UniformPdf(𝑥) = 1
ℳ

• name: custom unique string
• type: uniform_dist
• x: name of the variable 𝑥

2.1.1.4 CrystalBall distribution

The generalized Asymmetrical Double-Sided Crystall Ball line shape, composed
of a Gaussian distribution at the core, connected with two powerlaw distribu-
tions describing the lower and upper tails, given by

CrystalBallPdf(𝑚; 𝑚0, 𝜎, 𝛼𝐿, 𝑛𝐿, 𝛼𝑅, 𝑛𝑅) = 1
ℳ

⎧{{{
⎨{{{⎩

𝐴𝐿 ⋅ (𝐵𝐿 − 𝑚−𝑚0
𝜎𝐿

)−𝑛𝐿 , for 𝑚−𝑚0
𝜎𝐿

< −𝛼𝐿

exp (− 1
2 ⋅ [ 𝑚−𝑚0

𝜎𝐿
]2) , for 𝑚−𝑚0

𝜎𝐿
≤ 0

exp (− 1
2 ⋅ [ 𝑚−𝑚0

𝜎𝑅
]2) , for 𝑚−𝑚0

𝜎𝑅
≤ 𝛼𝑅

𝐴𝑅 ⋅ (𝐵𝑅 + 𝑚−𝑚0
𝜎𝑅

)−𝑛𝑅 , otherwise,

where

𝐴𝑖 = ( 𝑛𝑖
|𝛼𝑖|

)
𝑛𝑖

⋅ exp (−|𝛼𝑖|
2

2 )

𝐵𝑖 = 𝑛𝑖
|𝛼𝑖|

− |𝛼𝑖|

The keys are

• name: custom string
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• type: crystalball_dist
• m: name of the variable 𝑚
• m0: name or value of the central value 𝑚0
• alpha: value or names of 𝛼𝐿 and 𝛼𝑅 from above. must not be used in

conjuction with alpha_L or alpha_R.
• alpha_L: value or names of 𝛼𝐿 from above. must not be used in conjuc-

tion with alpha.
• alpha_R: value or names of 𝛼𝑅 from above. must not be used in conjuc-

tion with alpha.
• n: value or names of 𝑛𝐿 and 𝑛𝑅 from above. must not be used in

conjuction with n_L or n_R.
• n_L: value or names of 𝑛𝐿 from above. must not be used in conjuction

with n.
• n_R: value or names of 𝑛𝑅 from above. must not be used in conjuction

with n.
• sigma: value or names of 𝜎𝐿 and 𝜎𝑅 from above. must not be used in

conjuction with sigma_L or sigma_R.
• sigma_L: value or names of 𝜎𝐿 from above. must not be used in conjuc-

tion with sigma.
• sigma_R: value or names of 𝜎𝑅 from above. must not be used in conjuc-

tion with sigma.

2.1.1.5 Exponential distribution

The exponential distribution is defined as

ExponentialPdf(𝑥, 𝑐) = 1
ℳ ⋅ exp(−𝑐 ⋅ 𝑥)

• name: custom unique string
• type: exponential_dist
• x: name of the variable 𝑥
• c: value or name of the parameter used as coefficient 𝑐.

2.1.1.6 Gaussian Normal distribution

The Gaussian/Normal distribution is defined as

GaussianPdf(𝑥, 𝜇, 𝜎) = 1
ℳ exp ((𝑥 − 𝜇)2

𝜎2 )

• name: custom unique string
• type: gaussian_dist or normal_dist
• x: name of the variable 𝑥
• mean: value or name of the parameter used as mean value 𝜇
• sigma: value or name of the parameter encoding the standard deviation 𝜎.

#### Log-Normal distribution
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The log-normal distribution is defined as

LogNormalPdf(𝑥, 𝜇, 𝜎) = 1
ℳ

1
𝑥 exp (−(ln(𝑥) − 𝜇)2

2𝜎2 )

• name: custom unique string
• type: lognormal_dist
• x: name of the variable 𝑥
• mu: value or name of the parameter used as 𝜇
• sigma: value or name of the parameter 𝜎 describing the shape

2.1.1.7 Poisson distribution

The Poisson distribution of the variable 𝑥 is defined as

PoissonPdf(𝑥, 𝜆) = 1
ℳ

𝜆𝑥

𝑥! e−𝜆.

where 𝑥 is required to be an integer. In this case, the behavior for non-integer
values of 𝑥 is undefined. - name: custom unique string - type: poisson_dist - x:
name of the variable 𝑥 (usually referred to as 𝑘 for the standard integer case) -
mean: value or name of the parameter used as mean 𝜆.

2.1.1.8 Polynomial distribution

The polynomial distribution is defined as

PolynomialPdf(𝑥, 𝑎0, 𝑎1, 𝑎2, ...) = 1
ℳ

𝑛
∑
𝑖=0

𝑎𝑖𝑥𝑖 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ...

• name: custom unique string
• type: polynomial_dist
• x: name of the variable 𝑥
• coefficients: array of coefficients 𝑎𝑖. The length of this array implies the

degree of the polynomial.

2.1.2 Multivariate fundamental distributions

This section contains multivariate fundamental distributions. They may refer
to functions, parameters and more than one variable.

2.1.2.1 Barlow-Besston-Lite Constraint distribution

This distribution represents a product of Poisson distributions defining the sta-
tistical uncertainties of the histogram templates defined in a histfactory_func.
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BarlowBeestonLitePoissonConstraintPdf(𝑥) = 1
ℳ

𝑛
∏

𝑖
PoissonPdf(𝑥𝑖 ⋅ 𝜏𝑖, 𝜏𝑖)

• name: custom unique string
• type: barlow_beeston_lite_poisson_constraint_dist
• x: name of the variable 𝑥
• expected: array of central values 𝜏𝑖

2.1.2.2 Multivariate normal distribution

The multivariate normal distribution is defined as

MvNormalPdf(x, 𝜇, Σ) = 1
ℳ exp (−1

2(x − 𝜇)TΣ−1(x − 𝜇)) ,

with Σ ∈ ℝ𝑘×𝑘 being positive-definite.

• name: custom unique string
• type: multivariate_normal_dist
• x: array of names of the variables x. This also includes mixed arrays of

values and names.
• mean: array of length 𝑘 of values or names of the parameters used as mean

values 𝜇
• covariances: an array comprised of 𝑘 sub-arrays, each of which is also of

length 𝑘, designed to store values or names of the entries of the covariance
matrix Σ. In general, the covariance matrix Σ must be symmetric and
positive semi-definite.

Note: Users should prefer the specific distributions defined in this standard over
generic distributions where possible, as implementations of these will typically
be more optimized. Generic distributions should only be used if no equivalent
specific distribution is defined.

A generic distribution is defined by an expression that respresents the PDF of
the distribution in respect to the Lebesque measure. The expression must be a
valid HS3-expression string (see Section Generic Expressions).

• name: custom string
• type: generic_dist
• expression: a string with a generic mathematical expression. Simple math-

ematical syntax common to most programming languages should be used
here, such as x-2*y+z. The arguments x, y and z in this example must
be parameters, functions or variables. The distribution is normalized by
the implementation, a normalization term should not be included in the
expression. If the expression results in a negative value, the behavior is
undefined.
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2.1.2.3 HistFactory distribution

HistFactory [10] is a language to describe statistical models consisting only
of “histograms” (which is used interchangeably with “step-functions” in this
context). Each HistFactory distribution describes one “channel” or “region” of a
binned measurement, containing a stack of “samples”, i. e. binned distributions
sharing the same binning (step-functions describing the signal or background
of a measurement). Such a HistFactory model is shown in Figure 1 (originally
from [11]). Each of the contributions may be subject to modifiers.

Figure 1: A binned statistical model describing a High Energy Physics measure-
ment, in this case of the 𝐻 → 4𝑙 process by the ATLAS collaboration. Three
different sample (blue, red, violet) are considered.

The prediction for a binned region is given as
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𝜆(𝑥) = ∑
𝑠∈samples

[⎛⎜
⎝

𝑑𝑠(𝑥) + ∑
𝛿∈𝑀𝛿

𝛿(𝑥, 𝜃𝛿)⎞⎟
⎠

∏
𝜅∈𝑀𝜅

𝜅(𝑥, 𝜃𝜅)]

Here 𝑑𝑠(𝑥) is the prediction associated with the sample 𝑠, a step function

𝑑𝑠(𝑥) = 𝜒𝑦𝑠
𝑏 (𝑥)

In this section, 𝜒𝑦𝑠
𝑏 (𝑥) denotes a generic step function in the binning 𝑏 such that

𝜒𝑏(𝑥) = 𝑦𝑠,𝑖, some constant, if 𝑥 ∈ [𝑏𝑖, 𝑏𝑖+1). The 𝑦𝑠,𝑖 in this case are the bin
contents (yields) of the histograms. The 𝑀𝜅 are the multiplicative modifiers,
the 𝑀𝛿 are the additive modifiers. Each of the modifiers is either multiplicative
(𝜅) or additive (𝛿). All samples and modifiers share the same binning 𝑏. The
modifiers depend on a set of nuisance parameters 𝜃, where each modifier can
only depend on one 𝜃𝑖, but the 𝜃𝑖 can take the form of vectors and the same 𝜃𝑖
can be shared by several modifiers. By convention, these are denoted 𝛼 if they
affect all bins in a correlated way, and 𝛾 if they affect only one bin at a time.
The types of modifiers are

• A uncorrelated shape systematic or shapefactor modifier is a multiplicative
modifier that scales each single bin by the value of some independent
parameter 𝛾. Here, 𝜃𝑖 = ⃗𝛾, where the length of ⃗𝛾 is equal to the number
of bins in this region. This type of modifier is sometimes called shapesys,
with some nuance in the meaning. However, both are synonymous in the
context of this standard.

• A correlated shape systematic or histosys modifier is an additive modifier
that adds or subtracts a constant step function 𝜒𝑓 , scaled with a single
factor 𝛼. The modifier contains a data section, which contains the subsec-
tions hi and lo that help to define the step function 𝜒𝑓 . They contain
contents, which define the bin-wise additions or subtractions for 𝛼 = 1.
Here, 𝜃𝑖 = 𝛼.

• A normalization systematic or normsys modifier is a multiplicative modifier
that scales the entire sample with the same constant factor 𝑓 that is a
function of 𝛼. The modifier contains a data section, which contains the
values hi and lo that help to define 𝑓 . There are different functional
forms that can be chosen for 𝑓 . However, by convention 𝑓(𝛼 = 0) = 1,
𝑓(𝛼 = +1) =“hi” and 𝑓(𝛼 = −1) =“lo”. In this case, 𝜃𝑖 = 𝛼.

• A normalization factor or normfactor modifier is a multiplicative modifier
that scales the entire sample in this region with the value of the parameter
𝜇 itself. In this case, 𝜃𝑖 = 𝜇.

• The staterror modifier is a shorthand for encoding uncorrelated statisti-
cal uncertainties on the values of the step-functions, using a variant1 of
the Barlow-Beeston Method [12]. Here, the relative uncertainty on the

1The variation consists of summarizing all contributions in the stack to a single contribution
as far as treatment of the statistical uncertainties is concerned.
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sum of all samples in this region containing the staterror modifier is
computed bin-by-bin. Then, a constrained uncorrelated shape systematic
(shapesys) is created, encoding these relative uncertainties in the corre-
sponding Poisson (or Gaussian) constraint term.

The different modifies and their descriptions are also summarized in the follow-
ing table:

Type of
Modifier Description Definition

Free Pa-
rameters

Number of
Free Pa-
rameters

histosys Correlated
Shape
systematic

𝛿(𝑥, 𝛼) = 𝛼 ∗ 𝜒𝑓
𝑏 𝛼 1

normsys Normalization
systematic

𝜅(𝑥, 𝛼) = 𝑓(𝛼) 𝛼 1

normfactor Normalization
factor

𝜅(𝑥, 𝜇) = 𝜇 𝜇 1

shapefactor,
staterror

Shape
factor

𝜅(𝑥, ⃗𝛾) = 𝜒𝛾
𝑏 𝛾0, …, 𝛾𝑛 #bins

The staterror modifier is a special subtype of shapefactor, where the mean
of the constraint is given as the sum of the predictions of all the samples car-
rying a staterror modifier in this bin. The way modifiers affect the yield in
the corresponding bin is subject to an interpolation function. The overallsys
and histosys modifiers thus allow for an additional key interpolation, which
identifies one of the following functions:

• lin: {𝑦nominal + 𝑥 ⋅ (𝑦high − 𝑦nominal) if 𝑥 ≥ 0
𝑦nominal + 𝑥 ⋅ (𝑦nominal − 𝑦low) if 𝑥 < 0

• log: {𝑦nominal ⋅ ( 𝑦high
𝑦nominal

)𝑥
if 𝑥 ≥ 0

𝑦nominal ⋅ ( 𝑦low
𝑦nominal

)−𝑥
if 𝑥 < 0

• parabolic:
⎧{
⎨{⎩

𝑦nominal + (2𝑠 + 𝑑) ⋅ (𝑥 − 1) + (𝑦high − 𝑦nominal) if 𝑥 > 1
𝑦nominal − (2𝑠 − 𝑑) ⋅ (𝑥 + 1) + (𝑦low − 𝑦nominal) if 𝑥 < −1
𝑠 ⋅ 𝑥2 + 𝑑 ⋅ 𝑥 otherwise

with 𝑠 = 1
2 (𝑦high + 𝑦low) − 𝑦nominal and 𝑑 = 1

2 (𝑦high − 𝑦low)

• poly6:
⎧{
⎨{⎩

𝑦nominal + 𝑥 ⋅ (𝑦high − 𝑦nominal) if 𝑥 > 1
𝑦nominal + 𝑥 ⋅ (𝑦nominal − 𝑦low) if 𝑥 < −1
𝑦nominal + 𝑥 ⋅ (𝑆 + 𝑥 ⋅ 𝐴 ⋅ (15 + 𝑥2 ⋅ (3𝑥2 − 10))) otherwise

with 𝑆 = 1
2 (𝑦high − 𝑦low) and 𝐴 = 1

16 (𝑦high + 𝑦low − 2 ⋅ 𝑦nominal)
Modifiers can be constrained. This is indicated by the component constraint,
which identifies the type of the constraint term. In essence, the likelihood picks

14



up a penalty term for changing the corresponding parameter too far away from
its nominal value. The nominal value is, by convention, defined by the type of
constraint, and is 0 for all modifiers of type sys (histosys, normsys) and is 1
for all modifiers of type factor (normfactor, shapefactor). The strength of the
constraint is always such that the standard deviation of constraint distribution
is 1.

The supported constraint distributions, also called constraint types, are Gauss
for a gaussian with unit width (a gaussian distribution with a variance of 1),
Poisson for a unit Poissonian (e.g. a continous Poissonian with a central value
1), or LogNormal for a unit LogNormal,. If a constraint is given, a corresponding
distribution will be considered in addition to the aux_likelihood section of the
likelihood, constraining the parameter to its nominal value.

An exception to this is provided by the staterror modifier as described above,
and the shapesys for which a Poissonian constraint is defined with the central
values defined as the squares of the values defined in vals.

The components of a HistFactory distribution are:

• name: custom unique string
• type: histfactory_yield
• axes: array of structs representing the axes. If given each struct needs to

have the component name. Further, (optional) components are max, min
and nbins, or, alternatively, edges. The definition of the axes follows the
format for binned data (see Section Binned Data).

• samples: array of structs containing the samples of this channel. For
details see below. Struct of one sample:

• name: (optional) custom string, unique within this function
• data: struct containing the components contents and errors, depicting

the data contents and their errors. Both components are arrays of the
same length.

• modifiers: array of structs with each struct containing a component type
of the modifier, as well as a component parameter (defining a string) or a
component parameters (defining an array of strings) relating to the name
or names of parameters controlling this modifier. Further (optional)
components are data and constraint, both depending on the type of mod-
ifier. For details on these components, see the description above. Two
modifiers are correlated exactly if they share the same parameters as in-
dicated by parameter or parameters. In such a case, it is mandatory that
they share the same constraint term. If this is not the case, the behavior
is undefined.

HistFactory
{

"name": "myAnalysisChannel",
"type": "histfactory_dist",
"axes": [
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{ "max": 1.0, "min": 0.0, "name": "myRegion", "nbins": 2 }
],
"name":"myChannel1",
"samples": [

{
"name": "mySignal",
"data": { "contents": [ 0.5, 0.7 ], "errors": [ 0.1, 0.1 ] },
"modifiers": [

{ "parameter": "Lumi", "type": "normfactor" },
{ "parameter": "mu_signal_strength", "type": "normfactor" },
{ "constraint": "Gauss", "data": { "hi": 1.1, "lo": 0.9 },

"parameter": "my_normalization_systematic_1",
"type": "normsys" },

{ "constraint": "Poisson", "type": "staterror",
"parameters": ["gamma_stat_1","gamma_stat_2"]},

{ "constraint": "Gauss", "type": "histosys",
"data": {

"hi": { "contents": [ -2.5, -3.1 ] },
"lo": { "contents": [ 2.2, 3.7 ] }

},
"parameter": "my_correlated_shape_systematic_1" },

{ "constraint": "Poisson", "data": { "vals": [ 0.0, 1.2 ] },
"parameter": "my_uncorrelated_shape_systematic_2",
"type": "shapesys" }

]
},
{

"name": "myBackground",
...

}
]

}

2.1.2.4 Relativistic Breit-Wigner distribution

The relativistic Breit-Wigner distribution describes the lineshape of a resonance
studies in the mass spectrum of two particle system. It is assumed that the
resonance can decay into a list of channels.

The first channel in the list indicates the system for which mass distribution is
modelled.

BreitWignerPDF(𝑚, 𝑚BW) = 1
ℳ

𝑚Γ1(𝑚)
∣𝑚2

BW − 𝑚2 − 𝑖𝑚BWΓ(𝑚)∣2
,

Γ(𝑚) = ∑
𝑖

Γ𝑖(𝑚),
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When modelling the mass spectrum, the term 𝑚 in the numerator of Eq. (Breit-
Wigner) accounts for a jacobian of transformation from 𝑚2 to 𝑚. The width
term Γ1(𝑚) adds for the phase space factor for the channel of interest

• name: custom unique string
• type: relativistic_breit_wigner_dist
• mass: name of the mass variable 𝑚BW
• channels: list of structs encoding the channels

Each of the channels is defined by the partial width Γ𝑖(𝑚), given as

Γ𝑖(𝑚) = ΓBW,𝑖𝑛2
𝑙𝑖(𝑚)𝜌𝑖(𝑚),

𝜌𝑖(𝑚) = 2𝑞𝑖(𝑚)/𝑚,
𝑞𝑖(𝑚) = √(𝑚2 − (𝑚1𝑖 + 𝑚2𝑖)2)(𝑚2 − (𝑚1𝑖 − 𝑚2𝑖)2)/(2𝑚),

𝑛𝑙𝑖(𝑚) = 𝑧𝑙𝑖
𝑖 (𝑚)ℎ𝑙𝑖(𝑧𝑖(𝑚)),

𝑧𝑖(𝑚) = 𝑞𝑖(𝑚)𝑅𝑖

The ℎ𝑙(𝑧) is the standard Blatt-Weisskopf form-factors, ℎ2
0(𝑧) = 1/(1 + 𝑧2),

ℎ2
1(𝑧) = 1/(9+3𝑧2 +𝑧4), and so on (Eqs.(50.30-50.35) in Ref. [13]). The structs

defining the channels should contain the following keys:

• name: name of the final state (optional)
• Gamma: partial width ΓBW of the resonance
• m1: mass 𝑚1 of the first particle the resonance decays into (default value

0)
• m2: mass 𝑚2 of the second particle the resonance decays into (default value

0)
• l: orbital angular momentum 𝑙 (default value 0)
• R: form-factor size parameter 𝑅 (default value 3 GeV) For non-zero angular

momentum, Γ𝑖(𝑚BW) gives an approximation to the partial width of the
resonance, not ΓBW,𝑖. A commonly used approximation of the relativistic
Breit-Wigner function with the constant width is a special case of the Eq.
(Breit-Wigner), where the [channels] argument contains a single channel
with 𝑚1 = 0, 𝑚2 = 0, and 𝑙 = 0.

2.1.3 Composite distributions

This section contains composite distributions in the sense that they refer to
other distribution which they combine or modify in some way.

2.1.3.1 Mixture distribution

The mixture distribution, sometimes called addition of distributions, is a
(weighted) sum of distributions 𝑓𝑖( ⃗𝑥), depending on the same variable(s) ⃗𝑥:
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MixturePdf(𝑥) = 1
ℳ

𝑛
∑
𝑖=1

𝑐𝑖 ⋅ 𝑓𝑖( ⃗𝑥),

where the 𝑐𝑖 are coefficients and ⃗𝑥 is the vector of variables.

• name: custom unique string
• type: mixture_dist
• name: name of the variable 𝑥 (optional, since the variable is fully defined

by the summands)
• summands: array of names referencing distributions
• coefficients: array of names of coefficients 𝑐𝑖 or numbers to be added
• extended: boolean denoting whether this is an extended distribution

(optional, as it can be inferred from the lengths of the lists for summands
and coefficients) This distribution can be treated as extended or as
non-extended.

• If the number of coefficients equals the number of distributions and
extended is false, then the sum of the coefficient must be (approximately)
one.

• If the number of coefficients equals the number of distributions and
extended is true, then the sum of the coefficients will be used as the
Poisson rate parameter and the mixture distribution itself will use the
coefficients normalized by their sum.

• If the number of coefficients is one less than the number of distributions,
then extended must be false and 𝑐𝑛 is computed from the other coefficients
as

𝑐𝑛 = 1 −
𝑛−1
∑
𝑖=1

𝑐𝑖.

2.1.3.2 Product distribution

The product of s of independent distributions 𝑓𝑖 is defined as

ProductPdf(𝑥) = 1
ℳ

𝑛
∏

𝑖
𝑓(𝑥).

• name: custom string
• type: product_dist
• x: name of the variable 𝑥 (optional, since the variable is fully defined by

the factors)
• factors: array of names referencing distributions
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2.1.3.3 Density Function distribution

A distribution that is specified via a non-normalized density function 𝑓(𝑥). For-
mally, it corresponds to the probability measure that has the density 𝑓(𝑥) in
respect to the Lebesgue measure.

The density function is normalized automatically by ℳ = ∫ 𝑓(𝑥)𝑑𝑥, so the PDF
of the distribution is

DensityFunctionPdf(𝑓, 𝑥) = 𝑓(𝑥)
ℳ

The distribution can be specified either via the non-normalized density function
𝑓(𝑥) or via the non-normalized log-density function log(𝑓(𝑥)):

• density_function\_dist$: Specified via the PDF 𝑓(𝑥)
• name: custom string
• type: density_function_dist
• function: The density function 𝑓
• log_density_function\_dist: Specified via the PDF 𝑓(𝑥)
• name: custom string
• type: log_density_function_dist
• function: The density function 𝑓

2.1.3.4 Poisson point process

A Poisson point process distribution is understood here as the distribution of
the outcomes of a (typically inhomogeneous) Poisson point process. In particle
physics, such a distribution is often called an extended distribution [8]. In HS3,
a Poisson point process distribution is specified using a global-rate parameter
𝜆 and an underlying distribution 𝑚, either explicitly or implicitly (see below).
Random values are drawn from the Poisson point process distribution by draw-
ing a random number 𝑛 from a Poisson distribution of the global-rate 𝜆, and
then drawing 𝑛 random values from the underlying distribution 𝑚. The result-
ing random values are vectors 𝑥 of length 𝑛, so their length varies. The PDF
the Poisson point process distribution at an outcome 𝑥 (a vector of length 𝑛) is

PoissonPointProcessPdf(𝜆, 𝑚, 𝑥) = PoissonPdf(𝑛, 𝜆) ⋅
𝑛

∏
𝑖

PDF(𝑚, 𝑥𝑖).

In particle physics, the function PoissonPointProcessPdf(𝜆, 𝑚(𝜃), 𝑥), for a fixed
observation 𝑥 and varying parameters 𝜆 and 𝜃, is often called an extended
likelihood. A a poisson point process distribution can be specified in HS3 in
two ways:

• rate_extended_dist: The global-rate parameter 𝜆 and underlying distri-
bution 𝑚 are specified explicitly:
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• name: custom string
• type: rate_extended_dist
• rate: The global rate 𝜆
• dist: The underlying distribution 𝑚

The name of the variable 𝑥 is taken from the underlying distribution. The
underlying distribution must not be referred to from other components of the
statistical model.

• rate_density_dist: Specified via a non-normalized rate-density function
𝑓 . Both the global-rate parameter and the underlying distribution are
implicit: 𝜆 = ∫ 𝑓(𝑦)𝑑𝑦 and 𝑚 = DensityFunctionPdf(𝑓). More formally,
the distribution corresponds to the inhomogeneous Poisson point process
that is defined by a non-normalized rate measure which has density 𝑓 in
respect to the Lebesque measure.

• name: custom string
• type: rate_density_dist
• x: name of the variable 𝑥
• density: The rate-density function 𝑓

2.1.3.5 Bin count distribution

This is a binned version of the Poisson point process distribution (Poisson point
process). Is is the distribution of the bin counts that result from histogram-
ming the outcomes of a Poisson point process distribution using a given binning
scheme (see Binned Data). Like the Poisson point process distribution, a Bin-
counts distribution can either be specified via a global-rate parameter 𝜆 and
an underlying distribution 𝑚, or via a rate-density function 𝑓 (in which case 𝜆
and 𝑚 are implicit). In addition, the binning scheme also has to be specified
in either case, unless it can be inferred (see below). For 𝑘 bins, this type of
distribution corresponds to a product of 𝑘 Poisson distributions with rates

𝜈𝑖 = 𝜆 ⋅ ∫
bin𝑖

PDF(𝑦, 𝑚)𝑑𝑦 equivalent to

𝜈𝑖 = ∫
bin𝑖

𝑓(𝑦)𝑑𝑦

The PDF of the Bin-counts distribution at an outcome 𝑥 (a vector of length 𝑘,
same as the number of bins) is

BinCountsPdf(𝑥) =
𝑘

∏
𝑖

PoissonPdf(𝑥𝑖, 𝜈𝑖)

• bincounts_extended_dist: The global-rate parameter 𝜆 and underlying
distribution 𝑚 are specified explicitly:

• name: custom string
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• type: bincounts_extended_dist
• rate: The global rate 𝜆
• dist: The underlying distribution 𝑚
• axes: a definition of the binning to be used, following the defintions in

Binned data]. optional if dist is a binned distribution, in which case
the same binning is used by default.

The name of the variable 𝑥 is taken from the underlying distribution. The under-
lying distribution must not be referred to from other components of the statisti-
cal model. bincounts_density_dist: Specified via a non-normalized rate-density
function 𝑓 . Both the global-rate parameter and the underlying distribution are
implicit: 𝜆 = ∫ 𝑓(𝑦)𝑑𝑦 and 𝑚 = DensityFunctionPdf(𝑓).
More formally, the distribution corresponds to the inhomogeneous Poisson point
process that is defined by a non-normalized rate measure which has density 𝑓
in respect to the Lebesque measure.

• name: custom string
• type: bincounts_density_dist
• x: name of the variable 𝑥
• density: The rate-density function 𝑓
• axes: a definition of the binning to be used, following the defintions in

Binned Data.

2.2 Functions
The top-level component functions describes an array of mathematical functions
in struct format to be used as helper objects. Similar to distributions each entry
is required to have the components type and name. Other components are
dependent on the kind of functions. The field name is required and may be
any custom unique string. Functions in general have the following components:

• name: custom unique string
• type: string that determines the kind of function, e.g. sum
• ...: each function has individual parameter keys for the various individual

parameters. For example, functions of type sum have the parameter key
summands. In general, these keys can describe strings as references to other
objects or numbers. Depending on the parameter and the type of function,
they appear either in single item or array format.

Example: Functions
"functions": [

{
"name" : "sum1",
"type" : "sum",
"summands" : [1.8, 4, "param_xy"]

},
...

]
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In the following the implemented functions are described in detail.

2.2.1 Product

A product of values or functions 𝑎𝑖.

Prod =
𝑛

∏
𝑖

𝑎𝑖

• name: custom unique string
• type: product
• factors: array of names of the elements of the product or numbers.

2.2.2 Sum

A sum of values or functions 𝑎𝑖.

Sum =
𝑛

∑
𝑖

𝑎𝑖

• name: custom unique string
• type: sum
• summands: array of names of the elements of the sum or numbers.

2.2.3 Generic Function

Note: Users should prefer the specific functions defined in this standard over
generic functions where possible, as implementations of these will typically be
more optimized. Generic functions should only be used if no equivalent specific
distribution is defined. A generic function is defined by an expression. The
expression must be a valid HS3-expression string (see Section Generic Expres-
sions).

• name: custom unique string
• type: generic_function
• expression: a string with a generic mathematical expression. Simple math-

ematical syntax common to programming languages should be used here,
such as x-2*y+z. For any non-elementary operations, the behavior is un-
defined.

2.3 Data
The top-level component data contains an array of data sets in struct format.
Each data set needs to contain the components type and name. Other compo-
nents are dependent on the type of data set as demonstrated below:

• name: custom string
• type: string that determines the format of the observations
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• ...: each type of observations has different parameter keys. Some of these
are optional and marked accordingly in the more detailed description
below

A detailed description of the different types with examples can be found below.
While data, in most settings, has no uncertainty attached to it, this standard
does allow to provide data with uncertainty, as there are some settings in which
uncorrelated or correlated errors need to be taken into account. These include
cases such as

• generated data obtained from importance sampling, including a (poten-
tially Gaussian) uncertainty from the frequency weights

• unfolded data, resulting from arbitrarily complex transformation functions
involving statistical models folding some degree of uncertainty into the
data points themselves

While it should always be preferred to publish “raw” data, allowing to include
pre-processed data with corresponding uncertainties expands the possible appli-
cations considerably.

2.3.1 Point Data

Point data describes a measurement of a single number, with a possible uncer-
tainty (error).

• name: custom string
• type: point
• value: value of this data point
• uncertainty: (optional) uncertainty of this data point

Example: Point Data
"data":[

{
"name":"data1",
"type":"point",
"value":0.,
"uncertainty":1.

}
]

2.3.2 Unbinned Data

Unbinned data describes a measurement of multiple data points in a possibly
multi-dimensional space of variables. These data points can be weighted.

• name: custom string
• type: unbinned
• entries: array of arrays containing the coordinates/entries of the data
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• axes: array of structs representing the axes. Each struct must have the
components name as well as max and min.

• weights: (optional) array of values containing the weights of the individ-
ual data points, to be used for 𝜒2 comparisons and fits. If this component
is not given, weight 1 is assumed for all data points. If given, the array
needs to be of the same length as entries.

• entries_uncertainties: (optional) array of arrays containing the er-
rors/uncertainties of each entry. If given, the array needs to be of the
same shape as entries.

Example: Unbinned Data
"data":[

{
"name":"data1",
"type":"unbinned",
"weights":[ 9.0, 18.4 ],
"entries":[ [1,3], [2,9] ],
"entries_uncertainties":[ [0.3], [0.6] ],
"axes":[

{ "name":"variable1", "min":1, "max":3 },
{ "name":"variable2", "min":-10, "max":10 },
...

]
},
...

]

2.3.3 Binned Data

Binned data describes a histogram of data points with bin contents in a possibly
multi-dimensional space of variables. Whether entries that fall precisely on the
bin boundaries are sorted into the smaller or larger bin is under the discretion
of the creator of the model and thus not defined.

• name: custom string
• type: binned
• contents: array of values representing the contents of the binned data set
• axes: array of structs representing the axes. Each struct must have the

component name. Further, it must specify the binning through one of these
two options:

1. regular binnings are specified through the components max, min and
nbins

2. potentially irregular binnings are specified through the component
edges, which contains an array of length 𝑛 + 1, where the first and
last entries denote the minimum and and maximum of the variable,
and all entries between denote the intermediate bin boundaries.

• uncertainty: (optional) struct representing the uncertainty of the con-
tents. It consists of up to three components:
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– type: denoting the kind of uncertainty, for now only Gaussian
distributed uncertainties denoted as gaussian_uncertainty are
supported

– sigma: array of the standard deviation of the entries in contents.
Needs to be of the same length as contents

– correlation: (optional) array of arrays denoting the correlation
between the contents in matrix format. Must be of dimension length
of contents × length of contents. It can also be set to 0 to indicate
no correlation.

Example: Binned Data
"data":[

{
"name":"data2",
"type":"binned",
"contents":[ 9.0, 18.4 ],
"axes":[ { "name":"variable1", "nbins":2, "min":1, "max":3 } ]

},
{

"name":"asimov_data2",
"type":"binned",
"contents":[ 9.0, 18.4, 13, 0. ],
"axes":[

{ "name":"variable1", "nbins":2, "min":1, "max":3 },
{ "name":"variable2", "edges"[0,10,100] }

]
},

...
]

This type can also be used to store pre-processed data utilizing the uncertainty
component

Example: Pre-processed binned Data
"data":[

{
"name":"data4",
"type":"binned",
"contents":[ 9.0, 18.4 ],
"uncertainty" : {

"type": "gaussian_uncertainty",
"correlation" : 0,
"sigma" : [ 3, 4 ]

},
"axes":[

{ "name":"variable1", "nbins":2, "min":1, "max":3 },
...

]
},
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...
]

2.4 Likelihoods
The top-level component likelihoods contains an array of likelihoods in struct
format specifying mappings of distributions and observations. The correspond-
ing distributions and observations are inserted as keys in string format referenc-
ing to distributions and observations defined in the respective top-level compo-
nents, or as numbers for fixed data values. The combination of parameterized
distributions 𝑚𝑖(𝜃𝑖) with observations 𝑥𝑖 generates a likelihood function

L (𝜃1, 𝜃2, …) = ∏
𝑖

PDF(𝑚𝑖(𝜃𝑖), 𝑥𝑖)

The components of a likelihood struct are:

• name: custom string
• distributions: array of strings referencing the considered distributions
• data: array of strings referencing the used data, must be of the same

length as the array of distributions. Alternatively, the data-values for
single-dimensional distributions can be given in-line. For example, this
can be used for constraint terms representing auxiliary measurements.

• aux_distributions: (optional) array of strings referencing the considered
auxiliary distributions defined in the top-level component distributions.
They can be used to encode regularizers or penalty terms to aid the mini-
mization. These observed data for these distributions is implicit and not
part of data.

Example: Likelihoods
"likelihoods":[

{
"name":"likelihood1",
"distributions":[

"dist1",
"dist2",
"single_dimensional_dist_1",
...

],
"data": [

"data1",
"data2",
0,
...

],
"aux_distributions" : [ "regularization_term" ]

},
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...
]

2.5 Domains
The top-level component domains contains an array of domains giving infor-
mation on the ranges of parameters and variables in struct format. Within
a specified domain, the corresponding model is expected to yield valid values.
Each domain must contain a name and a type although right now only the
product_domain type is supported, even though others like e. g. a simplex do-
main might be added later. A domain consists of the following components:

• name: custom string
• type: product_domain
• axes: array of parameters and variables in this domain (see below) The

component axes itself is an array of ranges each containing the components
min, max and name.

• name: custom string
• max: upper bound of range
• min: lower bound of range

Example: Domains
"domains":[

{
"name":"domain1",
"type":"product_domain",
"axes": [

{ "name" : "par_1", "max" : 1, "min" : 8 },
{ "name" : "par_2", "max" : 4.78, "min" : 6 },
...

]
},
...

]

2.6 Parameter points
The top-level component parameter_points contains an array of parameter con-
figurations. These can be starting values for minimizations, parameter settings
used to generate toy data, best-fit-values obtained, or points in parameter space
used for different purposes.

• name: custom string
• parameters: array of parameter structs (see below) The component

parameters is an array of components each containing:
• name: custom string
• value: number, value of variable
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• const: (optional) boolean, whether variable is constant or not. Default
is false.

Example: Parameter points
"parameter_points":[

{
"name" : "starting_values",
"parameters": [

{ "name" : "par_1", "value": 3 },
{ "name" : "par_2", "value": 7, "const": true },
...

]
},
...

]

2.7 Analyses
The top-level component analyses contains an array of possible (automated)
analyses. To that extent, likelihoods, parameters of interest and the affiliated
domains are listed. Description of the components:

• name: long custom string
• likelihood: name as reference to a likelihood defined in the top-level

component likelihoods
• parameter_of_interest: (optional) array of names as reference to pa-

rameters that are interesting for the analysis at hand
• domain: name of a domain to be used for the parameters, defined in the

top-level component domains
• init: (optional) name of an initial value to be used, defined in the

top-level component parameter_points
• prior: (optional) name of a prior distribution, defined in the top-level

component distributions. This is only used for Bayesian interpretations
and should not be confused with auxiliary distributions listed in the likeli-
hood section. The prior could, for example, be a product distribution of all
the individual priors. If for any parameter, both a prior and a parameter
domain are given, the prior should be truncated to the given parameter
domain. Otherwise, implicit flat priors over the given parameter domain
are assumed.

All parameters of all distributions in the likelihood must either be listed under
the domain referenced, or set to const in the parameter point referenced.

Example: Analyses
"analyses": [

{
"name" : "analysis1",
"likelihood" : "likelihood1",
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"aux_likelihood_terms" : ["distribtion_1", "distribution_2", ...]
"parameters_of_interest" : ["param1"],
"domain" : "domain1" ,
"init" : "starting_values",
"prior" : "prior_dist"

},
...

]

2.8 Metadata
The top-level component metadata contains meta-information related to the cre-
ation of the file. The component hs3_version stores the HS3 version and is
required for now. Overview of the components:

• hs3_version: (required) HS3 version number as String for reference
• packages: (optional) array of structs defining packages and their version

number used in the creation of this file, depicted with the components
name and version respectively

• authors: (optional) array of authors, either individual persons, or col-
laborations

• publications: (optional) array of document identifiers of publications
associated with this file

• description: (optional) short abstract/description for this file

Example: Metadata
"metadata" : {

"hs3_version" : "0.2.0",
"packages" : [ { "name": "ROOT", "version": "6.28.02" } ],
"authors": ["The ATLAS Collaboration", "The CMS Collaboration"],
"publications": ["doiABCDEFG"]

}

2.9 Miscellaneous
The top-level component misc can contain arbitrary, user-created information
in struct format.

Example: Miscellaneous
"misc" : {

"customkey1" : "custom information 1" ,
"myPackage_internal" : {

"somekey" : "custom info only affecting myPackage",
"default_color_for_all_curves" : "fuchsia" }

}
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This top-level component is intended to store any and all additional information,
including user- or backend-specific meta-information. Examples include, but are
not limited to:

• colors and styles for drawing distributions in this file
• suggested settings for samplers or minimizers when working with the dis-

tributions in this file
• comments explaining design choices made when building the model in this

file
• suggested names and paths for output files to be used by backends working

with this file

3 Supplementary Material
This section contains supplementary material referenced in section [sec:toplevel]

3.1 Generic Expressions
This section details the HS3 generic expression language. Expressions can be
use to specify generic functions and generic distributions. The implementations
that support generic expression must support:

• Literal integer (format 1234), boolean (format TRUE and FALSE) and floating
point (format 123.4, 1.234e2 and 1.234E2) values.

• Literal values for 𝜋 (PI) and Euler’s number (EULER).
• The arithmetic operators addition (x + y), subtraction (x - y), multipli-

cation (x * y), division (x / y) and exponentiation (x^y).
• The comparison operators approximately-equal (x == y), exactly-equal

(x === y), not-approximately-equal (x != y), not-exactly-equal (x !== y),
less-than (x < y), less-or-equal (x <= y), greater-than (x >= y) and greater-
or-equal (x >= y).

• The logical operators logical-inverse (!a), logical-and (a && b), logical-or
(a || b), less-or-equal (a <= b), greater-than (a >= b) and greater-or-equal
(a >= b).

• Round brackets to specify the order of operations.
• The ternary operator condition ? result_if_true : result_if_false
• The functions

– exp(x): Euler’s number raised to the power of x
– log(x): Natural logarithm of x
– sqrt(x): The square root of x
– abs(x): The absolute value of x
– pow(x, y): x raised to the power of y
– pow(x, y): x raised to the power of y
– min(x, y): minimum of x and y
– max(x, y): maximum of x and y
– sin(x): The sine of x
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– cos(x): The cosine of x
– tan(x): The tangent of x
– asin(x): The inverse sin of x
– acos(x): The inverse cosine of x
– atan(x): The inverse tangent of x

Symbols not defined here refer to variables in the HS3 model. The operator
precedence and associativity is acorrding to the common conventions. Spaces
between operators and operands are optional. There must be no space between a
function name and the function arguments, spaces between function arguments
are optional (f(a, b) and f(a,b) are correct but f (a, b) is not allowed).

Division must be treated as floating-point division (i.e. 2/3 should be equivalent
to 2.0/3.0).

The approximately-equal (a == b) and the not-approximately-equal operator
(a != b), should compare floating-point numbers to within a small multiple
of the unit of least precision. The behavior of any functions and operators
not listed above is not defined, they are reserved for future versions of this
standard. Implementations may support additional functions and operators as
experimental features, but their use is considered non-standard and results in
non-portable and potentially non-forward-compatible HS3 documents.
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